Anti-SARS-CoV-2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination

Jeannie C. KELLY, MD, MS;; Ebony B. CARTER, MD, MPH;; Nandini RAGHURAMAN, MD, MS;; Lila S. NOLAN, MD;; Qingqing GONG, PhD;; Angela N. LEWIS, MD;; Misty GOOD, MD, MS

PII: S0002-9378(21)00211-8
DOI: https://doi.org/10.1016/j.ajog.2021.03.031
Reference: YMOB 13773

Received Date: 19 March 2021
Accepted Date: 26 March 2021

Please cite this article as: KELLY JC, CARTER EB, RAGHURAMAN N, NOLAN LS, GONG Q, LEWIS AN, GOOD M, Anti-SARS-CoV-2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination, American Journal of Obstetrics and Gynecology (2021), doi: https://doi.org/10.1016/j.ajog.2021.03.031.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Inc. All rights reserved.
TITLE
Anti-SARS-CoV-2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination

AUTHORS
Jeannie C. KELLY, MD, MS;1 Ebony B. CARTER, MD, MPH;1 Nandini RAGHURAMAN, MD, MS;1 Lila S. NOLAN, MD;2 Qingqing GONG, PhD;2 Angela N. LEWIS, MD;2 Misty GOOD, MD, MS2

AFFILIATIONS
1. Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Washington University in St. Louis
2. Department of Pediatrics, Division of Newborn Medicine, Washington University in St. Louis

CORRESPONDING AUTHOR:
Jeannie C. Kelly, MD, MS
Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine
4901 Forest Park Ave., Center for Outpatient Health, 10th Floor, Campus Box 8064
St. Louis, MO 63108; P: (314) 747-6788 F: (314) 747-1429
Email: jckelly@wustl.edu

Conflicts of Interest: MG has received sponsored research agreement funding from Astarte Medical Partners and Takeda Pharmaceuticals. She also participated in a neonatal microbiome advisory board for Abbott Laboratories. None of these sources had any role in this study. The remaining authors also report no conflict of interest.

Financial support for research: This publication in part was supported by and grant to EBC by the Foundation for Barnes-Jewish Hospital and their generous donors; and the Washington University Institute of Clinical and Translational Sciences which is, in part, supported by the NIH/National Center for Advancing Translational
Sciences (NCATS), CTSA grant UL1TR002345. JCK has received funding support: 00033770 from The PEW Charitable Trusts Community Opioid Response and Evaluation (CORE). LSN has received funding support: T32HD043010 from the National Institutes of Health (NIH) and an American Academy of Pediatrics Marshall Klaus Award. MG has received the following support: R01DK118568 from the NIH, the St. Louis Children’s Hospital Foundation, the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital, and the Department of Pediatrics at Washington University School of Medicine, St. Louis.

WORD COUNT: 456
CONDENSATION: N/A

SHORT TITLE: SARS-CoV-2 antibodies in breast milk after vaccination
ABSTRACT: N/A

KEY WORDS: COVID-19, SARS-CoV-2, breast milk antibodies, IgG, IgA
OBJECTIVE

After trials demonstrated 94-95% efficacy in preventing coronavirus disease 2019 (COVID-19), two lipid nanoparticle-formulated, nucleoside-modified messenger RNA-based vaccines received emergency use authorization by the U.S. Food and Drug Administration in December 2020.¹ Although no lactating people were included in vaccine trials, national organizations support vaccination of this population, suggesting potential infant protection by passive transfer of maternal antibodies.¹² However, there are no published data to support this theoretic benefit. We sought to characterize breast milk levels of anti-SARS-CoV-2 antibodies in lactating people undergoing COVID-19 vaccination.

STUDY DESIGN

Participants were prospectively recruited during Phase IA rollout of the COVID-19 vaccine at a tertiary care center, after IRB approval. Inclusion criteria included lactation and planned vaccination with the Pfizer-BioNTech/BNT162b2 vaccine. After obtaining informed consent, participants provided frozen breast milk samples at the following timepoints of vaccination: prior to, within the first 24 hours of, and weekly following. Samples were assessed for SARS-CoV-2 RNA by quantitative real-time PCR and anti-spike immunoglobulin (Ig) G and IgA by an enzyme-linked immunosorbent assay.

RESULTS

Five subjects and 29 human milk samples were included in the analysis. Subject characteristics are reported in Figure 1A. All pre-vaccine milk samples tested negative for SARS-CoV-2 RNA, as defined by Ct>40 for the N1 target (Figure 1B). Anti-spike IgG and IgA levels were significantly elevated relative to pre-vaccine baseline at all time points. Anti-spike protein IgG remained sustained at a significant elevation beginning at 20 days after the first dose compared with the pre-vaccine baseline (P<0.01) through the final milk sample (Figure 1C). Levels of anti-spike protein IgA were significantly elevated from baseline starting two weeks after first dose through the final sample; however, individual-level data suggest a possible gradual decline in anti-spike IgA in human milk over time following the second dose (Figure 1D).

CONCLUSION
We characterize longitudinal breast milk levels of anti-spike IgG/A following Pfizer-BioNTech/BNT162b2 vaccination, demonstrating sustained elevation of IgG/IgA levels. This response is similar to prior studies on maternal vaccination, which have shown high levels of breast milk IgA/G production for up to six months following vaccination for influenza and pertussis. A concurrent decrease in infant respiratory illness rates suggest that maternal vaccination confers protection against infection in breastfed infants. Thus, the Pfizer-BioNTech/BNT162b2 vaccination may also confer protection against COVID-19 to breastfed infants as well.

Although vaccination remains one of the most crucial interventions to control infection spread, vaccine hesitancy remains a barrier to widespread uptake. Our study is limited by a small number of participants, but we report data that suggest potential immune benefit to infants of lactating people up to 80 days following COVID-19 vaccination. Further studies are needed to characterize the length of antibody production in breast milk, and the effect on infant infection rates after maternal COVID-19 vaccination.

Acknowledgements: The authors would like to thank Chanill Henley for her assistance in the completion of this project.
References

Figure Legend

Figure 1. Breast milk levels of anti-SARS-CoV-2 antibodies after vaccination with Pfizer-BioNTech/BNT162b2.

A total of 5 lactating women who received two doses of the Pfizer-BioNTech BNT162b2 vaccine were included in the analysis. (A) Self-reported clinical data of the study subjects are shown, with subject 2 identifying as immunocompromised. (B) Pre-vaccine baseline milk samples were analyzed for SARS-CoV-2 RNA using the N1 target compared with RNAse P, with undetectable viral RNA defined as Ct>40. Anti-spike protein IgG (C) and IgA (D) antibody levels in human milk were analyzed at serial time points following the first and second vaccine doses. Delipidated human milk samples were diluted at a 1:1 ratio with sample diluent and tested in duplicate for IgG and IgA against SARS-CoV-2 full length spike protein using ELISA Kits from Cell Signaling Technology (Catalog #20154C for IgG and Catalog #58873C for IgA). Antibody signal detections were analyzed by spectrophotometric absorbance at 450 nm. Gray vertical lines represent the timing of the administration of the second dose. Of note, the first sample from Subject 1 was obtained 17 days following the first vaccine. Data are displayed as mean ± SEM and were analyzed using Mann-Whitney U test. *P<0.05, **P<0.01.
Figure 1

A. Self-reported characteristics of study participants.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (years)</th>
<th>Race</th>
<th>Medical conditions</th>
<th>Medications</th>
<th>Immunosuppressed condition or medication</th>
<th>Prior test-confirmed COVID-19 infection</th>
<th>Gestational age at delivery (weeks)</th>
<th>Current age of infant (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>White</td>
<td>Depression, obesity</td>
<td>Escitalopram</td>
<td>No</td>
<td>No</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>Black</td>
<td>Colitis, eczema</td>
<td>Adalimumab</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>Asian</td>
<td>None</td>
<td>Birth control</td>
<td>No</td>
<td>No</td>
<td>38</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>White</td>
<td>Depression</td>
<td>Fluoxetine</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>White</td>
<td>Anxiety</td>
<td>Anti-anxiety medication, birth control</td>
<td>No</td>
<td>No</td>
<td>38</td>
<td>1</td>
</tr>
</tbody>
</table>

B. SARS-CoV-2 N1 mRNA expression prior to vaccination.

<table>
<thead>
<tr>
<th>Subject</th>
<th>C, Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>40</td>
</tr>
<tr>
<td>2</td>
<td>>40</td>
</tr>
<tr>
<td>3</td>
<td>>40</td>
</tr>
<tr>
<td>4</td>
<td>>40</td>
</tr>
<tr>
<td>5</td>
<td>>40</td>
</tr>
</tbody>
</table>

*C, value greater than 40 denotes no detection of SARS-CoV-2 in breast milk sample.
*Sample obtained after vaccine dose 1, but prior to dose 2.

C. Human Milk SARS-CoV-2 Anti-Spike Protein IgG

D. Human Milk SARS-CoV-2 Anti-Spike Protein IgA