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ABSTRACT

Background: Breastfeeding is known to have beneficial effects, but there is concern that breast-
feeding during antiepileptic drug (AED) therapy may be harmful to cognitive development. Animal
and human studies have demonstrated that some AEDs can adversely affect the immature brain.
However, no investigation has examined effects of breastfeeding during AED therapy on subse-
quent cognitive abilities in children.

Methods: The Neurodevelopmental Effects of Antiepileptic Drugs Study is an ongoing prospec-
tive multicenter observational investigation of long-term effects of in utero AED exposure on
cognition. Between 1999 and 2004, we enrolled pregnant women with epilepsy who were taking
a single AED (carbamazepine, lamotrigine, phenytoin, or valproate). We recently reported on dif-
ferential AED effects on age 3 year cognitive outcomes. In this report, we focus on the effects of
breastfeeding during AED therapy on age 3 cognitive outcomes in 199 children.

Results: A total of 42% of children were breastfed. IQs for breastfed children did not differ from
nonbreastfed children for all AEDs combined and for each of the 4 individual AED groups. Mean
adjusted IQ scores (95% confidence intervals) across all AEDs were breastfed � 99 (96–103)
and nonbreastfed � 98 (95–101). Power was 95% to detect a half SD IQ effect in the combined
AED analysis, but was inadequate within groups.

Conclusions: This preliminary analysis fails to demonstrate deleterious effects of breastfeeding
during AED therapy on cognitive outcomes in children previously exposed in utero. However,
caution is advised due to study limitations. Additional research is needed to confirm this observa-
tion and extend investigations to other AEDs and polytherapy. Neurology® 2010;75:1954–1960

GLOSSARY
AED � antiepileptic drug; NART � National Adult Reading Test; NEAD � Neurodevelopmental Effects of Antiepileptic Drugs;
TONI � Test of Nonverbal Intelligence; WASI � Wechsler Abbreviated Scale of Intelligence.

Breastfeeding is known to be beneficial for the infant and mother.1 Breastfeeding is associated
with reduced risk of severe lower respiratory tract infections, atopic dermatitis, asthma, acute
otitis media, nonspecific gastroenteritis, obesity, type 1 and 2 diabetes, childhood leukemia,
sudden infant death syndrome, and necrotizing enterocolitis. Several studies have suggested
that breastfeeding may have positive effects on subsequent cognitive development, but this
remains controversial.1 In mothers, breastfeeding is associated with a reduced risk for type 2
diabetes, breast cancer, ovarian cancer, and maternal postpartum depression.

Animal studies have demonstrated that some AEDs can produce widespread neuronal apo-
ptosis in the neonatal brain, which is dose-dependent, occurs at therapeutically relevant blood
levels, and requires only brief exposure.2-8 The effect may be due to reduced expression of
neurotrophins and levels of protein kinases that promote neuronal growth and survival. Thus,
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AEDs might produce similar adverse effects in
children exposed in utero or in the neonatal
period. In fact, some AEDs have been associ-
ated with reduced cognitive abilities in chil-
dren exposed in utero.9-11 Thus, concern exists
that breastfeeding during AED therapy might
be harmful to the child. However, no investi-
gation has examined the effects of breastfeed-
ing during AED therapy on subsequent
cognitive abilities in children. Since neonatal
exposure to AEDs via breast milk is voluntary,
data are needed for mothers to make informed
decisions. Here, we examine the effects of
breastfeeding during AED therapy in an ongo-
ing prospective investigation of neurodevelop-
mental effects of AEDs on cognitive outcomes
in children of mothers with epilepsy.

METHODS Design. The Neurodevelopmental Effects of
Antiepileptic Drugs (NEAD) study is a prospective observational
study examining possible behavioral teratogenesis of AEDs. We
enrolled pregnant women with epilepsy, who were on 1 of the 4
AED monotherapies (i.e., carbamazepine, lamotrigine, phenyt-
oin, or valproate) from October 1999 through February 2004,
across 25 epilepsy centers in the United States and United King-
dom. We recently reported on preliminary findings of cognitive
outcomes in the children at 3 years of age.11 Here we test the
hypothesis that breastfeeding during AED therapy is detrimental
to the child’s cognitive development.

Standard protocol approvals and patient consents. In-
stitutional review boards at each center approved the study, and
written informed consent was obtained prior to enrollment.

Participants. Pregnant women with epilepsy on carbamaz-
epine, lamotrigine, phenytoin, or valproate monotherapy were
enrolled. These 4 AED monotherapies were the most frequently
employed during the enrollment time period. Other AEDs were
not included because of insufficient numbers. Polytherapy was
not included because of its association with poorer outcomes.12

A nonexposed control group was not included at the direction of
an NIH review panel. Mothers with IQ below 70 were excluded
to avoid floor effects and because maternal IQ is the major pre-
dictor of child IQ in population studies.13 Other exclusion crite-
ria included positive syphilis or HIV serology, progressive
cerebral disease, other major disease (e.g., diabetes), exposure to
teratogenic agents other than AEDs, poor AED compliance,
drug abuse in the prior year, or drug abuse sequelae.

Procedures. Information was collected on potentially con-
founding variables, including maternal IQ, age, education, em-
ployment, race, seizure/epilepsy types and frequency, AED
dosages, compliance, socioeconomic status,14 UK/US site, pre-
conception folate use, use of alcohol, tobacco, or other drugs
during pregnancy, unwanted pregnancy, abnormalities/compli-
cations in the present pregnancy or prior pregnancies, enroll-
ment and birth gestational age, birthweight, breastfeeding, and
childhood medical diseases. Children were classified as breastfed
if they were currently breastfeeding at the time of the 3-month
follow-up phone call after delivery. Cognitive outcomes were

evaluated by assessors (blinded to AED) using the Differential
Ability Scales15 (conducted at 36–45 months/old); standardized
scores were calculated. Separate investigations with very similar
designs in the United States and United Kingdom were merged
after initiation. Maternal IQs were determined by different mea-
sures due to the later merger; these measures included the Test of
Nonverbal Intelligence (TONI)16 in 267 mothers, Wechsler Ab-
breviated Scale of Intelligence (WASI)17 in 18, and National
Adult Reading Test (NART)18 in 18. Training and monitoring
of neuropsychological evaluations were conducted to assure
quality and consistency. Face-to-face training on all neuropsy-
chological test batteries was performed annually. Each assessor
was required to identify errors in a videotaped test session and
provide appropriate correction for errors in administration and
scoring. In addition, assessors submitted their own videotape
and record forms using each test instrument to the Neuropsy-
chology Core Director for review, feedback, and approval. If
assessors failed, they submitted additional video assessment for
approval prior to testing children in the study.

Statistical analysis. The primary analysis in this substudy in-
cluded 199 children, for whom there were both cognitive assess-
ment at age 3 and data on breastfeeding. Two children with
complete data were excluded from this sample because their
mothers either switched AED or stopped using AEDs while
breastfeeding. In the primary analysis, the breastfed and non-
breastfed groups were compared across all AEDs with respect to
child cognitive outcomes at age 3. Secondary analyses examined
the following: 1) effects of breastfeeding within each AED group; 2)
sensitivity of results to baseline differences in covariates; and 3) sen-
sitivity of results to missing data. Analyses were performed at the
NEAD Data and Statistical Center using SAS 9.2.

Linear regression models were used to examine breastfed/
nonbreastfed group differences in IQ adjusting for AED group,
maternal IQ, standardized AED dose, maternal and gestational
age at delivery, and preconception folate. These covariates were
found to be significantly related to the age 3 outcomes in our
prior analysis.11 A nonparametric Kruskal-Wallis test was used to
compare duration of breastfeeding across AED groups.

Since the women were not randomized to AED in this obser-
vational study, baseline differences between AED groups might
obscure a negative effect of an AED taken during breastfeeding.
Propensity scores methods are well-accepted tools to examine
this possibility. Thus, subgroup analyses were conducted in
which subgroups were defined by propensity scores.19,20 Propen-
sity scores are predicted probabilities of receiving a treatment (or
in this case, being breastfed) based on baseline covariates. Co-
variates are approximately equally distributed within subgroups
defined by propensity scores. Propensity scores were estimated
using predicted probabilities from a logistic regression model
with breastfeeding status (yes/no) as outcome. Variables related
to breastfeeding were predictors in the propensity score model
along with variables significantly related to age 3 IQ.21 The pre-
dictors in the propensity score model included AED group, ma-
ternal IQ, maternal and gestational age, preconception folate,
tobacco use during pregnancy, education, socioeconomic status,
employment status, unwanted pregnancy, race, and convulsions
during pregnancy (yes/no). Given the resulting distributions of
estimated propensity scores in the 2 groups (breastfed and non-
breastfed), subjects were partitioned into 2 subgroups depending
on whether their estimated propensity score was above or below
the median estimated propensity score. Within each of the 2
resulting subgroups, covariates were balanced between the
breastfed and nonbreastfed groups (p � 0.05, t test for continu-
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ous variables or �2 test for categorical variables), permitting us to
compare mean IQ outcomes between the breastfed group and
the nonbreastfed group.

To investigate sensitivity of primary results to missing data
(missing age 3 outcome or missing breastfeeding data), analyses
were also conducted using the intent-to-treat sample (n � 309
live births including 6 twin pairs). To account for missing data, a
third breastfeeding category was created for “breastfeeding data
missing” to compare to the breastfed and nonbreastfed groups.
Data were available for breastfeeding in 249 (81%). Age 3 out-
comes were missing in 77 (25%). Two were excluded from the
analysis because the mother stopped AED or switched AED
while breastfeeding, resulting in an analysis sample size of n �

307. Monotone data Markov Chain Monte Carlo methods were
used in secondary analyses to impute missing age 3 outcomes.22-24

Missing age 3 outcomes were imputed from available age 2 out-
comes (n � 26 of 77) and from baseline variables related to
outcome or likelihood of missing outcome data (n � 51 of 77).
Baseline variables in the imputation model included AED, dose,

maternal IQ and age, gestational age at delivery, preconception
folate, socioeconomic status, and US/UK site. Least squares
mean IQs were estimated for the breastfed and nonbreastfed
groups adjusting for maternal IQ, AED group, maternal age,
dose, gestational age, and folate. Standard errors and confidence
intervals of all estimates incorporated imputation uncertainty.

RESULTS The primary analysis included 194
mothers and 199 children (5 sets of twins). Baseline
characteristics of the breastfed and nonbreastfed
groups and differences between groups are depicted
in table 1. The statistical results for the primary anal-
ysis of all AEDs combined are presented in table 2.
No effect of breastfeeding was seen on IQ outcomes
at age 3. Follow-up analyses for each AED group
individually also found no effect of breastfeeding on
IQ. Table 3 summarizes the sample sizes, adjusted
mean IQs, 95% confidence intervals, and statistical
comparisons for all AEDs combined and for each
AED group. Overall, 42% of children were breast-
fed; median time breastfeeding across all AEDs was 6
months (range 3–24 months). The percent breastfed
for each AED group were as follows: CBZ � 44%,
LTG � 46%, PHT � 42%, and VPA � 32%,
which did not differ statistically across AEDs (p �
0.61). AED groups also did not differ in breastfeed-
ing duration (p � 0.70). Mean adjusted IQ scores
(95% confidence intervals) across all AEDs were as
follows: breastfed � 99 (96:103) and nonbreast-
fed � 98 (95:101). Power was 95% to detect a half
SD IQ effect in the combined AED analysis, but was
inadequate within groups. Note that the mean IQ
scores in table 3 differ from those presented in our
prior publication11 because the primary analyses dif-
fered. The present IQ results are divided by breast-
fed/nonbreastfed and are based on a subset of 199
children for whom there were both cognitive assess-
ment at age 3 and data on breastfeeding. The prior
publication presented IQs based on an intent-to-treat
analysis of the full 307 live births. Nevertheless, the dif-
ferential pattern across AEDs is the same with the low-
est IQs associated with in utero valproate exposure.

The propensity score analysis suggests that the re-
sults are not due to differences in baseline variables
related to either the child IQ outcome or breastfeed-
ing status (table 4). The analysis examining sensitiv-
ity of results to missing data demonstrates that the
results cannot be explained by incomplete data. A
summary of missing data for age 3 IQ and for breast-
feeding for each AED group is given in table e-1 (on
the Neurology� Web site at www.neurology.org). In
the intent-to-treat sample, which included 307 of the
originally enrolled children, missing outcomes were
imputed and a third breastfeeding category was cre-
ated for missing breastfeeding data. The adjusted
mean IQs (95% confidence intervals) are as follows:

Table 1 Baseline characteristics of 194 mothers according to breastfed
category for the 199 children

Breastfed Nonbreastfed
Statistical
differencea

Mothers, n (%)b 82 (42) 112 (58) 0.03

Maternal IQ, mean
(95% confidence interval)

104 (100–108) 95 (92–98) 0.0001

Maternal age, mean
(95% confidence interval)c

31 (30–32) 30 (28–31) 0.02

Standardized dose, mean
(95% confidence interval)d

37 (33–41) 38 (34–42) 0.72

Gestational age, wk, mean
(95% confidence interval)c

39 (38–39) 39 (38–39) 0.48

Folate, n (%)e 56 (68) 59 (53) 0.03

UK site, n (%) 15 (18) 32 (29) 0.10

Epilepsy types, n (%)f

Localization related 49 (60) 72 (64) 0.52

Idiopathic generalized 23 (28) 33 (29) 0.83

Generalized tonic-clonic
seizuresg

10 (12) 7 (6) 0.15

Convulsions, n (%)h

None 63 (84) 77 (75) 0.17

>5 Convulsions 2 (3) 4 (4) 0.65

a Chi-square test of equal proportions for categorical variables; t test for continuous
variables.
b Maternal racial/ethnic distributions were 79% white, 11% Hispanic, 5% black, and 5%
other.
c Age at delivery.
d Average dose for pregnancy. See Methods for description of how dosages were standardized.
e Preconception folate use.
f Three epilepsy types: localization related, idiopathic generalized, and generalized tonic-
clonic unknown if partial or generalized. Maternal seizure types included 62% localization-
related epilepsy (simple partial, complex partial, or secondary generalized tonic-clonic),
29% generalized epilepsy (absence, myoclonic, tonic-clonic, or tonic seizures with initial
bilateral cerebral involvement as indicated by EEG or clinical syndrome), and 9% general-
ized tonic-clonic (uncertain if partial or generalized). The localization-related epilepsies
were 42% symptomatic and 58% cryptogenic. All generalized epilepsies were idiopathic
(4% juvenile myoclonic, 5% absence, 21% positive family history but without an identified
specific genetic abnormality, and 70% not otherwise classified).
g Uncertain if localization related or generalized.
h Convulsions � n (%) of mothers without convulsions or �5 during pregnancy; seizure
frequency during pregnancy not available for 17 mothers.
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breastfed � 100 (96–103); nonbreastfed � 97 (94–
100); missing breastfeeding data � 97 (92–102).

DISCUSSION The present study did not demon-
strate any deleterious effects of breastfeeding during
AED therapy on cognitive outcomes in children who
were previously exposed to AEDs during their moth-
er’s pregnancy. Similar to our prior report,11 IQ at
age 3 years in children of women with epilepsy is
related to maternal IQ, maternal age, gestational age,
preconception folate use, and type of AED exposure.
Fetal valproate exposure was associated with lower
IQ in a dose-dependent manner, consistent with
other studies that indicate a special teratogenic risk for
valproate.12 Children exposed in utero to valproate are
at risk for both congenital malformations and cognitive
impairment.9-12,25,26 The recent American Academy of
Neurology guidelines recommend that if possible, val-
proate should be avoided during the first trimester of
pregnancy to decrease the risk of major congenital mal-
formations and avoided throughout pregnancy to pre-
vent reduced cognitive outcomes.12

Strengths of our study include its prospective de-
sign, blinded cognitive assessments using standard-
ized measures, and detailed monitoring of multiple
potential confounding factors. However, caution is
advised due to study limitations, which include a rel-
atively small sample size, loss of enrolled subjects to
analysis, lack of randomization, lack of an unexposed
control group during pregnancy, lack of details to
fully quantitate the amount of breastfeeding, absence
of AED concentrations in breast milk or in children’s
serum, and relatively young age of the children at this
planned interim analysis. In addition, the present
study does not address any potential deleterious ef-
fects of AED exposure through breast milk in the
newborn not previously exposed in utero.

Because the NEAD study is not a randomized
trial, it is possible that an adverse effect of breastfeed-
ing during AED therapy might be obscured by con-
founding factors related to baseline characteristics,
which might affect the child’s IQ. For example, ma-
ternal IQ was higher in the breastfeeding group, and
preconception folate use was also higher in the
breastfeeding group. Further, a larger portion of pa-
tients on valproate had generalized epilepsy. How-
ever, no adverse effects of breastfeeding were found
in analyses adjusting for these and other baseline
characteristics, including the propensity score sub-
group analyses.

Rather than epilepsy or seizures, most AED pre-
scriptions are written for pain or psychiatric indica-
tions. Our study did not include women who were
prescribed AEDs for these other indications, but
there is concern that their children are at the same
risk, since one study found that incidence of malfor-
mations in these children is similar to that of children
of women taking AEDs for epilepsy.27

Why would adverse cognitive outcomes be associ-
ated with in utero exposure for some AEDs (e.g.,
valproate), but not for exposure to breastfeeding?
Susceptibility to AED exposure may be greater for
the fetal than neonatal brain, but animal studies
would suggest that this is not the case. The adverse
effects on the immature brain seen with some AEDs
are dose dependent. The blood levels achieved in the
child during breastfeeding are likely to be substan-
tially lower than those achieved during pregnancy,28

and thus, may be inadequate to produce the adverse
effects. Alternatively, adverse effects produced from
in utero exposure may mask any further smaller ef-
fects obtained during breastfeeding. In addition, the
proposed benefits of breastfeeding on newborn cog-
nitive development1 could offset potential deleteri-
ous effects of continued AED exposure. Although
not significant, fewer mothers on valproate breastfed,
but the mean IQ of children of women with epilepsy

Table 2 Statistical results for effects of breastfeeding and other factors on
age 3 child IQ based on regression models for the age 3 completer
population with data on breastfeeding (n � 199)

F value
Degrees of
freedom

Coefficienta for
variable in model

p Value for
variable in model

Breastfed 0.48 1 1.63 0.49

Maternal IQ 15.47 1 0.28 0.0001

Maternal age 6.15 1 0.56 0.01

Antiepileptic drug group 2.91 3 (4 categories: p value only) 0.04

Antiepileptic drug dose 3.93 1 �0.12 0.05

Gestational age 8.11 1 1.38 0.005

Folate 6.82 1 6.57 0.01

a Coefficients represent the incremental effect on the IQ outcome of a one unit increase in
the covariate, at fixed values of all other covariates in the model.

Table 3 Adjusted mean age 3 IQ by antiepileptic drug (AED) group

AED group Breastfed No. Age 3 IQa 95% Confidence intervalsb

All AEDs Yes 84 99 96–103

No 115 98 95–101

Carbamazepine Yes 26 103 97–108

No 32 98 93–103

Lamotrigine Yes 30 104 97–110

No 36 104 98–110

Phenytoin Yes 17 91 84–98

No 23 99 93–105

Valproate Yes 11 93 82–105

No 24 90 83–98

a Mean age 3 years IQs adjusted for maternal IQ, maternal age, dose, gestational age, and
folate. Means were also adjusted for AED group in the “all AEDs” category.
b None of the breastfed vs nonbreastfed comparisons was significant.
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on valproate who breastfed was not less than the
mean among those who did not breastfeed while tak-
ing valproate (see table 3). Other baseline differences
between the breastfed and nonbreastfed groups may
have obscured breastfeeding effects, but as noted pre-
viously propensity score analyses did not provide ev-
idence for this hypothesis.

Further studies are needed to confirm our prelim-
inary analysis and to extend investigations to other
AEDs and to AED polytherapy. In addition, it is
critical that research be conducted to understand the
underlying mechanisms of adverse AED effects on
the immature brain and to define the risks associated
with AEDs in the neonate for treatment of seizures
where the AED blood levels are higher.
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during pregnancy �yes/no�). The above median group includes women who were more likely
to breastfeed given their baseline covariates, while the below median group includes
women who were less likely to breastfeed given their baseline covariates (e.g., the women in
the above median group had higher IQ, were slightly older, and were more likely to take
preconception folate). The 2 above median subgroups are similar in their baseline charac-
teristics, but differ in their actual breastfed status. Thus, differences in these 2 subgroups
should be related to breastfeeding if all relevant covariates were measured. The same ap-
plies to comparison of the 2 below median subgroups.
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